首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4325篇
  免费   758篇
  国内免费   433篇
化学   2620篇
晶体学   37篇
力学   844篇
综合类   55篇
数学   833篇
物理学   1127篇
  2024年   3篇
  2023年   72篇
  2022年   117篇
  2021年   154篇
  2020年   221篇
  2019年   206篇
  2018年   162篇
  2017年   193篇
  2016年   249篇
  2015年   202篇
  2014年   259篇
  2013年   370篇
  2012年   306篇
  2011年   341篇
  2010年   279篇
  2009年   277篇
  2008年   259篇
  2007年   250篇
  2006年   232篇
  2005年   204篇
  2004年   192篇
  2003年   220篇
  2002年   148篇
  2001年   105篇
  2000年   69篇
  1999年   56篇
  1998年   49篇
  1997年   54篇
  1996年   32篇
  1995年   46篇
  1994年   36篇
  1993年   23篇
  1992年   24篇
  1991年   20篇
  1990年   18篇
  1989年   11篇
  1988年   13篇
  1987年   6篇
  1986年   7篇
  1985年   5篇
  1984年   5篇
  1983年   7篇
  1982年   2篇
  1981年   4篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1963年   1篇
  1959年   1篇
  1936年   1篇
排序方式: 共有5516条查询结果,搜索用时 15 毫秒
1.
陈华俊  朱鹏杰  陈咏雷  侯宝成 《中国物理 B》2022,31(2):27802-027802
We investigate theoretically Rabi-like splitting and Fano resonance in absorption spectra of quantum dots(QDs)based on a hybrid QD-semiconducting nanowire/superconductor(SNW/SC)device mediated by Majorana fermions(MFs).Under the condition of pump on-resonance and off-resonance,the absorption spectrum experiences the conversion from Fano resonance to Rabi-like splitting in different parametric regimes.In addition,the Fano resonances are accompanied by the rapid normal phase dispersion,which will indicate the coherent optical propagation.The results indicate that the group velocity index is tunable with controlling the interaction between the QD and MFs,which can reach the conversion between the fast-and slow-light.Fano resonance will be another method to detect MFs and our research may indicate prospective applications in quantum information processing based on the hybrid QD-SNW/SC devices.  相似文献   
2.
Considering the effect of stochasticity including white noise and colored noise, this paper aims to study a hybrid stochastic cholera epidemic model with waning vaccine-induced immunity and nonlinear telegraph perturbations. First, we derive a critical value ? 0 C related to the basic reproduction number ? 0 of the deterministic model. The key aim of this paper is to generalize the θ-stochastic criterion method proposed by the recent work (Han et al. in Chaos Solit Fract 140:110238, 2020) to eliminate nonlinear telegraph perturbations. Next, via constructing several θ-stochastic Lyapunov functions and using the generalized method, we further prove that the stochastic model have a unique ergodic stationary distribution under ? 0 C > 1. Results show that the prevention and control of cholera epidemic depend on low transmission rate and small telegraph perturbations. Finally, the corresponding numerical simulations are performed to illustrate our analytical results and a practical application on the Somalia cholera outbreak is shown at the end of this paper.  相似文献   
3.
何蔓  陈贝贝  胡斌 《化学教育》2022,43(18):11-15
充分利用线上教学的优势,对化学院本科生开设了“联用技术及元素形态”国际课程,避免了传统教学中组织、协调外籍/外地专家资源过程中必要的各种消耗,极大程度地整合教学资源、改善教学效果。在该课程的探索与实践过程中,学生们对痕量元素形态及基于等离子体质谱的各种联用技术产生了极大的兴趣,激发了他们的主动学习热情;教师之间及师生之间的沟通趋向更简单、更灵活、更实时,为后续线上线下混合式国际课程建设提供了良好的基础和借鉴。  相似文献   
4.
A boundary‐fitted moving mesh scheme is presented for the simulation of two‐phase flow in two‐dimensional and axisymmetric geometries. The incompressible Navier‐Stokes equations are solved using the finite element method, and the mini element is used to satisfy the inf‐sup condition. The interface between the phases is represented explicitly by an interface adapted mesh, thus allowing a sharp transition of the fluid properties. Surface tension is modelled as a volume force and is discretized in a consistent manner, thus allowing to obtain exact equilibrium (up to rounding errors) with the pressure gradient. This is demonstrated for a spherical droplet moving in a constant flow field. The curvature of the interface, required for the surface tension term, is efficiently computed with simple but very accurate geometric formulas. An adaptive moving mesh technique, where smoothing mesh velocities and remeshing are used to preserve the mesh quality, is developed and presented. Mesh refinement strategies, allowing tailoring of the refinement of the computational mesh, are also discussed. Accuracy and robustness of the present method are demonstrated on several validation test cases. The method is developed with the prospect of being applied to microfluidic flows and the simulation of microchannel evaporators used for electronics cooling. Therefore, the simulation results for the flow of a bubble in a microchannel are presented and compared to experimental data.  相似文献   
5.
Abstract

In this study, the photovoltaic organic-inorganic structures were created by deposition of poly(3,4-ethylenedioxythiophene) film doped by poly(styrenesulfonate) and reduced graphene oxide on the porous silicon/silicon substrate. Formation of the hybrid structure was confirmed by means of atomic-force microscopy and Fourier transform infrared spectroscopy. The current-voltage characteristics of the obtained structures were studied. It was found the increase of electrical conductivity and photo-induced signal in organic-inorganic structures. Temporal parameters and spectral characteristics of photoresponse in the 400–1100?nm wavelength range were investigated. The widening of spectral photosensitivity in a short-wavelength range due to light absorption in various layers of the multijunction structure in comparison with single crystal silicon was revealed.  相似文献   
6.
We present a simple and cost‐effective curvature calculation approach for simulations of interfacial flows on structured and unstructured grids. The interface is defined using volume fractions, and the interface curvature is obtained as a function of the gradients of volume fractions. The gradient computation is based on a recently proposed gradient recovery method that mimicks the least squares approach without the need to solve a system of equations and is quite easy to implement on arbitrary polygonal meshes. The resulting interface curvature is used in a continuum surface force formulation within the framework of a well‐balanced finite‐volume algorithm to simulate multiphase flows dominated by surface tension. We show that the proposed curvature calculation is at least as accurate as some of the existing approaches on unstructured meshes while being straightforward to implement on any mesh topology. Numerical investigations also show that spurious currents in stationary problems that are dependent on the curvature calculation methodology are also acceptably low using the proposed approach. Studies on capillary waves and rising bubbles in viscous flows lend credence to the ability of the proposed method as an inexpensive, robust, and reasonably accurate approach for curvature calculation and numerical simulation of multiphase flows.  相似文献   
7.
Nickel oxide (NiO) has emerged as one of the most promising transition-metal oxides (TMOs) for electrochemical capacitors, batteries, catalysis, and electrochromic films, owing to its cost-effectiveness, abundance, and well-defined electrochemical properties. Recent studies have identified that mixing NiO with graphene or graphene derivatives results in novel composites with synergistic effects and superior electrochemical performance. This review summarizes the latest advances in composites of NiO with graphene or graphene derivatives. The synthetic strategies, morphologies, and electrochemical performance of these composites are introduced, as well as their electrochemical applications in supercapacitors, batteries, sensors, catalysis, and so forth. Finally, tentative conclusions and assessments regarding the opportunities and challenges for the future development of these composites and other TMOs/graphene or graphene-derived composites are presented.  相似文献   
8.
An efficient edge based data structure has been developed in order to implement an unstructured vertex based finite volume algorithm for the Reynolds-averaged Navier–Stokes equations on hybrid meshes. In the present approach, the data structure is tailored to meet the requirements of the vertex based algorithm by considering data access patterns and cache efficiency. The required data are packed and allocated in a way that they are close to each other in the physical memory. Therefore, the proposed data structure increases cache performance and improves computation time. As a result, the explicit flow solver indicates a significant speed up compared to other open-source solvers in terms of CPU time. A fully implicit version has also been implemented based on the PETSc library in order to improve the robustness of the algorithm. The resulting algebraic equations due to the compressible Navier–Stokes and the one equation Spalart–Allmaras turbulence equations are solved in a monolithic manner using the restricted additive Schwarz preconditioner combined with the FGMRES Krylov subspace algorithm. In order to further improve the computational accuracy, the multiscale metric based anisotropic mesh refinement library PyAMG is used for mesh adaptation. The numerical algorithm is validated for the classical benchmark problems such as the transonic turbulent flow around a supercritical RAE2822 airfoil and DLR-F6 wing-body-nacelle-pylon configuration. The efficiency of the data structure is demonstrated by achieving up to an order of magnitude speed up in CPU times.  相似文献   
9.
Experiments were carried out to observe the effect of a magnetic field and grid biasing voltage in presence of a plasma bubble in a magnetized, filamentary discharge plasma system. A spherical mesh grid of 80% optical transparency was negatively biased and introduced into the plasma for creating a plasma bubble. Diagnostics via an electrical Langmuir probe and a hot emissive probe were extensively used for scanning the plasma bubble. Plasma floating potential fluctuations were measured at three different positions of the plasma bubble. The instability in the pattern showed the dynamic transition from periodic to chaotic for increasing magnetic fields. Time scale analysis using continuous wavelet transform was carried out to identify the presence of non‐linearity from the contour plots. The mechanisms of the low‐frequency instabilities along with the transition to chaos could be qualitatively explained. Non‐linear techniques such as fast Fourier transform, phase space plot, and recurrence plot were used to explore the dynamics of the system appearing during plasma fluctuations. In order to demonstrate the observed chaotic phenomena in this study, characteristics of chaos such as the Lyapunov exponent were obtained from experimental time series data. The experimentally observed potential structure is confirmed with numerical analysis based on fluid hydrodynamics.  相似文献   
10.
We present novel inorganic–organic hybrid catalyst to accomplish domino multi‐component reaction (MCR) for synthesis of 3‐amino‐2′‐oxospiro[benzo[c]pyrano[3,2‐a]phenazine‐1,3′‐indoline]‐2‐carbonitrile/carboxylate derivatives. This methodology offers remarkable development by easy production of H3PMo12O40/Hyd‐SBA‐15 in regard to solving the problem of using harsh catalysts, also it demonstrates to be impressive and environmentally friendly in term of low reaction times and high yields.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号